Howtocom's Blog

ระบบ BUS บนเครื่องคอมพิวเตอร์ | กุมภาพันธ์ 13, 2010

ระบบ BUS บนเครื่องคอมพิวเตอร์

 

  BUS หมายถึง ช่องทางการขนส่งถ่ายข้อมูลจากอุปกรณ์หนึ่งไปยังอุปกรณ์หนึ่งของระบบคอมพิวเตอร์เพราะการทำงานของระบบคอมพิวเตอร์ CPU จะต้องอ่านเอาคำสั่งหรือโปรแกรมจากหน่วยคงวามจำ มาตีความและทำตามคำสั่งนั้นๆ ซึ่งในบางครั้งจะต้องอ่านข้อมูลจากอุปกรณ์อื่นๆ เพื่อใช้ประกอบในการทำงาน หรือใช้ประมวลผลด้วยผลลัพธ์ของการประมวล ก็ต้องส่งไปแสดงที่ยังจอภาพ หรือเครื่องพิมพ์หรืออุปกรณ์อื่นๆ ระบบ CPU ทางกายภาพ คือสายทองแดงที่วางตัวอยู่บนแผงวงจรของเครื่องคอมพิวเตอร์ ที่เชื่อมโยงกับอุปกรณ์ต่างๆ ความกว้างของระบบบัส จะนับขนาดข้อมูลที่วิ่งอยู่โดยจะมีหน่วยเป็น บิต (BIT) บนเครื่องไมโครคอมพิวเตอร์ บัสจะมีความกว้างจะทำให้การส่งถ่ายข้อมูลจะทำได้ครั้งละมากๆ จะมีผลทำให้คอมพิวเตอร์เครื่องนี้ทำงานได้เร็วตามไปด้วยระบบบัส ขนาด 16 บิตก็คือระบบการส่งถ่ายข้อมูลพร้อมๆกันในคราวเดียวกันได้ถึง 16 บิต และบัส 32 บิต ย่อมเร็วกว่าบัส 16 บิต ในระบบบัสที่ส่งข้อมูลได้จำนวนเท่าๆกัน นั้นก็ยังมีบางอย่างที่ทำให้การส่งข้อมูลมีความแตกต่างกัน ดังที่เราจะเห็นว่าเครื่องพีซีของเราในปัจจุบันจะมีระบบบัสอยู่หลายขนาดเช่น ISA, EISA. MCA, VLPCI เป็นต้น ทั้ง ISA, AGP,VLPCI ล้วนแต่เป็น CARD เพิ่มขยาย (EXPANSION CARD) ซึ่งนำมาต่อกับระบบบัสเพิ่มขยาย (EXPANSION BUS) ที่จะช่วยเพิ่มประสิทธิภาพ และช่วยเพิ่มขีดความสามารถให้กับคอมพิวเตอร์ ระบบบัสเพิ่มขยายนั้น จะช่วยให้เราสามารถปรับแต่ง หรือเพิ่มขยายความสามารถของระบบ โดยผ่านทาง PKUG-INBOARD หรือเรียกว่า เป็น CARD เพิ่มขยาย EXPANSION CARD เช่นเมื่อต้องการให้ เครื่องCOMPUTER มีเสียง อยากให้คอมพิวเตอร์เล่นเพลงได้ก็ต้องหาซื้อSOUNDCARD และลำโพงมาต่อเพิ่ม โดยแค่นำมา PLUG ลงใน EXPANSION SLIT บน MAINBOARD และทำการ CONFIG ก็สามารถใช้งานได้ โดยไม่จำเป็นต้อง
เดินสายไฟ รื้อ MAINBOARD ให้ยุ่งยาก ระบบบัสเพิ่มขยายนี้มีใช้มานานแล้ว โดยสมัยแรกๆ ที่ทำการลดขนาดเมนเฟรม เป็น MINICOMPUTER บริษัท DIGITAL EQUIPMENTDORPORATION หรือที่รู้จักกันในนาม DEC ได้วางตลาด MINICOMPUTER ลักษณะ BUS-ORIENTED DESIGN ซึ่งประกอบไปด้วย แผงวงจร
ย่อยๆบน BOARD นำมาประกอบรวมกัน ต่อมา เครื่องจักรที่ได้รับยกย่องว่าเป็น PC (PERSONAL COMPUTER) เครื่องแรกก็ได้ถือกำเนิดขึ้นเป็นผลงานของED ROBERTS โดยให้ชื่อว่า ALTAIR (อัลแตร์) ซึ่งลักษณะของเครื่องนี้ จะเป็นลักษณะ SINGLE BOARD MACHINE กล่าวคือมีเพียง BOARD เปล่าๆ ซึ่งมี SLOTเพิ่มขยายให้จำนวนหนึ่ง และตัว CPU เองรวมทั้งหน่วยความจำหลัก (MAINMEMORY/RAM) ก็อยู่บน BOARD เพิ่มขยายที่นำมา PLUG บน SLOT นั้นๆนั่นเอง โดยระบบบัสที่ใช้เรียกว่า S-100 หรือ ALTAIR BUS (IEEE 696) ซึ่งก็ใช้เป็นมาตรฐานในวงการนี้มานานหลายปี แต่ก็ใช่ว่าเครื่องทุกๆ เครื่องจะต้องใช้ALTAIR BUS นี้ เพราะทาง APPLE เองก็ออกมาตรฐานของตัวเองขึ้นมา เรียกว่า APPLE BUSและทาง IBM เอง ก็ได้กำหนดมาตรฐาน PC BUS ขึ้นมาพร้อมๆกับการ IBM PC ต้นแบบ

       การทำงานของระบบคอมพิวเตอร์ ถ้าเปรียบเทียบกับระบบโครงสร้างร่างกายของมนุษย์เราน่าจะ เปรียบเทียบได้ง่ายและเห็นภาพชัดเจน เพราะอย่างน้อยคนเราส่วนใหญ่คงจะพอรู้ระบบโครงสร้างการทำงาน ของร่างกายของเราเองอยู่บ้างไม่มากก็น้อยล่ะ ดังนั้นระบบการทำงานของบัสก็จะคล้ายกับเส้นเลือดในร่างกายของมนุษย์นั่นเองสำหรับทำหน้าที่ในการส่งถ่ายกระแสเลือดไปหล่อเลี้ยงส่วนต่างๆ ของร่างกาย ซึ่งกระแสเลือดในระบบคอมพิวเตอร์ก็คือข้อมูล (Data)นั่นเอง บัส คือ ทางเดินหรือ ช่องทางระหว่างอุปกรณ์ที่ใช้ในการติดต่อสื่อสารภายในคอมพิวเตอร์
 
  

ในระบบไมโครคอมพิวเตอร์ การส่งถ่ายข้อมูลส่วนมากจะเป็นระหว่างไมโครโปรเซสเซอร์กับอุปกรณ์ภายนอก

ทั้งหมด โดยผ่านบัส ในไมโครโพรเซสเซอร์จะมีบัสต่างๆ ดังนี้ บัสข้อมูล (DATA BUS) คือบัสที่ ไมโครโพรเซสเซอร์ (ซีพียู) ใช้เป็นเส้นทางผ่านในการควบคุมการส่งถ่ายข้อมูลจากตัวซีพียูไปยังอุปกรณ์ภายนอก
หรือรับข้อมูลจากอุปกรณ์ภายนอกเพื่อทำการประมวลผลที่ซีพียู บัสรองรับข้อมูล( ADDRESS BUS) คือบัสที่ตัวซีพียู เลือกว่าจะส่งข้อมูลหรือรับข้อมูลจากอุปกรณ์ไหนไปที่ใด โดยจะต้องส่งสัญญาณเลือกออกมาทางแอดเดรสบัส บัสควบคุม (CONTROL BUS) เป็นบัสที่รับสัญญาณการควบคุมจากตัวซีพียูโดยบัสควบคุมเพื่อบังคับ
ว่าจะอ่านข้อมูลเข้ามา หรือจะส่งข้อมูลออกไปจากตัวซีพียู โดยระบบภายนอกจะตอบรับต่อสัญญาณควบคุมนั้น ไมโครโพรเซสเซอร์ไม่ใช่จะควบคุมการทำงานของบัสทั้งหมด บางกรณีในการส่งถ่ายข้อมูลภายนอกด้วยกันเอง ผ่านบัสได้เป็นกรณีพิเศษเหมือนกัน เช่นการอ่านข้อมูลจากหน่วยความจำสำรองขนาดใหญ่สามารถ
ส่งผ่านข้อมูลมายังหน่วยความำหลักได้โดยผ่านไมโครโพรเซสเซอร์เลย ก็โดยการใช้ขบวนการที่เรียกว่าขบวนการ DMA (DIRECT MEMORY ACCESS)
 

 
   บัสเป็นเส้นทางหลักของคอมพิวเตอร์ในการเชื่อมโยงในการ์ดขยายทุกชนิด ไปยังไมโครโพรเซสเซอร์ บัสความจริงก็ คือ ชุดของเส้นลวดที่วางขนานกันเป็นเส้นทางวงจรไฟฟ้าเปรียบเทียบเหมือนถนนที่มีหลาย ช่องทางจราจร ยิ่งมีช่องทางจราจรมาก ก็ยิ่งระบายความร้อนได้มากและหมดเร็ว เมื่อเราเสียบการ์ดลงช่องเสียบบนแผงวงจรหลัก (สล็อต) ก็เท่ากับว่าได้เชื่อมต่อการ์ดนั้นเข้ากับวงจรบัสโดยตรง จุดประสงค์หลักของบัสก็คือ การส่งผ่านข้อมูลไปและกลับจากไมโครโพรเซสเซอร์หรือจากอุปกรณ์หนึ่ง โดยทางคอนโทรลเลอร์ DMA การ์ดทุกตัวที่เสียบอยู่บนสล็อตของแผงวงจรหลักจะใช้เส้นทางเดินของบัสอันเดียวกัน
ดังนั้นข้อมูลต่างๆจึงถูกจัดระบบและควบคุมการส่งผ่านในระบบ จะพบว่าบัสแบ่งได้เป็น 4 ส่วนใหญ่ๆดังนี้
1.สายไฟฟ้า(POWERLINE)จะให้พลังไฟฟ้ากับการ์ดขยายต่างๆ
2. สายควบคุม (CONTROL LINE ) ใช้สำหรับส่งผ่านสัญญาณเวลา (TIMING SIGNG) จากนาฬิกาของระบบ และส่งสัญญาณอินเตอร์รัพต์
3. สายแอดเดรส (ADDRESS LINE) ข้อมูลใดๆที่ถูกส่งผ่านไป แอดเดรสเป้าหมายจะถูกส่งมาตามสายข้อมูลและบอกให้ตำแหน่งรับข้อมูล(แอดเดรส)รู้ว่าจะมีข้อมูลบางอย่างพร้อมที่จะส่งมาให้
4. สายข้อมูล (DATA LINE) ไมโครเมตรจะตรวจสอบว่ามีสายสัญญาณแสดงความพร้อมหรือ (บนสาย I/O CHANNEL READY) เมื่อทุกอย่างเป็นไปด้วยดีข้อมูลก็จะถูกส่งผ่านไปตามสายข้อมูล จำนวนสายที่ระบุถึงแอดเดรสของบัส หมายถึงจำนวนของหน่วยความจำที่อ้างแอดเดรสได้ทั้งหมด เช่น สายแอดเดรส 20 สาย สามารถใช้หน่วยความจำได้ 1 เมกะไบต์จำนวนของสายบัสจะหมายถึงบัสข้อมูล ซึ่งก็คือข้อมูลทั้งหมด ที่ส่งผ่านไปในบัสตามกฎที่ตั้งไว ความเร็วในการทำงานที่เหมาะสมจะเป็นไปได้ก็ต่อเมื่อ จำนวนสายข้อมูลเพียงพอกับจำนวนสายข้อมูลของไมโครโพรเซสเซอร์ จำนวนสายส่งข้อมูลมักจะระบุถึงคุณสมบัติของบัสในเครื่องพีซีนั้นๆ เช่น บัส 16 บิต หมายถึง บัสที่ใช้สายข้อมูล 16 สายนั่นเอง

   PC BUS เมื่อ IBM ได้ทำการเปิดตัว IBM PC(XT) ตัวแรกซึ่งใช้ CPU 8088 เป็น CPU ขนาด 8 BIT ดังนั้นเครื่อง คอมพิวเตอร์เครื่องนี้จึงมีเส้นทางข้อมูลเพียง 8 เส้นทาง     (8 DATA LINE) และเส้นทางที่อยู่ 20 เส้นทาง (20 ADDRESS LINE) เพื่อใช้ในการอ้างตำแหน่งของหน่วยความจำ CARD ที่นำมาต่อกับ PC BUS นั้นจะเป็น CARD แบบ 62 PIN ซึ่ง 8 PIN ใช้สำหรับส่งข้อมูลอีก 20 PIN ไว้สำหรับอ้างตำแหน่งของหน่วยความจำ ซึ่ง CPU 8088 นั้นสามารถอ้างอิงหน่วยความจำได้เพียง 1 เมกะไบต์ ซึ่งในแต่ละ PIN นั้นสามารถส่งข้อมูลได้เพียง 2 ค่า คือ 0 กับ 1 (หรือ ROW กับ HIGH) ดังนั้นเมื่อใช้20 PIN ก็จะอ้างอิงตำแหน่งได้ที่ 2 คูณกัน 20 ครั้ง(หรือยกกำลัง 20)
ซึ่งก็จะได้เท่ากับ 1 MEGABYTE พอดีส่วน PIN ที่เหลือก็ใช้เป็นตัวกำหนดการอ่านค่าว่าอ่านจากตำแหน่งของหน่วยความจำ หรือตำแหน่งของ INPUT/OUTPUT หรือบางส่วน PIN ก็ใช้สำหรับจ่ายไฟ +5ม -5ม +12 และสาย GROUND สายดิน เพื่อจ่ายไฟให้กับ GARD ที่ต่อพ่วงบน SLOT ของ PC BUS   นั่นเอง  และยังมี PIN
บางตัวที่ทำหน้าที่เป็นตัว RESETหรือเป็นตัว REFRESH หรือแม้กระทั่ง CLOCK หรือสัญญาณของระบบนั่นเอง ระบบ BUS แบบ PC BUS   นี้มี ความกว้างของ BUSเป็น 4.77 MHzและยังสามารถส่งถ่ายข้อมูลด้วยความเร็วสูงสุดที่ 2.38 ต่อวินาที

 ในยุคของ PC AT หรือตั้งแต่ CPU รุ่น 980286 เป็นต้นมาได้มีการเปลี่ยนแปลงขนาดของเส้นทางข้อมูลจาก 8 BIT เป็น 16 BIT ทำให้ IBM ต้องมาทำการออกแบบระบบ BUS ใหม่เพื่อให้สามารถส่งผ่านข้อมูลทีละ 16 BIT แน่นอนว่าการออกแบบใหม่นั้นก็ต้องทำให้เกิดความเข้ากันได้ย้อนหลังด้วย(COMPATBLE) กล่าวคือ
ต้องสามารถใช้งานกับ PC บัสได้ด้วย เพราะถ้าหากไม่เช่นนั้นแล้ว ก็คงจะขายออกยาก ลองคิดดูว่า ถ้าหากออก PC AT ที่ใช้ระบบบัสใหม่ทั้งหมด และไม่เข้ากันกับ PC XT ที่ออกมาก่อนหน้านั้นได้ เครื่อง PC BUT เดิมอีก 36 PIN โดยที่เพิ่มเส้นทางข้อมูล 8 PIN รวมแล้วก็จะเป็น 16 PIN สำหรับส่งข้อมูลครั้งละ 16 BIT พอดี และเพิ่ม 4 PIN สำหรับทำหน้าที่อ้างตำแหน่งจากหน่วยความจำ ซึ่งก็จะรวมเป็น 24 PIN และจะอ้างได้มากถึง 16 Meg. ซึ่งก็เป็นขนาดของหน่วยความจำสูงสุดที่ CPU 80286 นั้นสามารถที่จะอ้างได้ แต่อย่างไรก็ตามการอ้างตำแหน่งของ I/O PORTนั้นก็ยังถูกกำหนดไว้ที่ 1024 อยู่ดี เนื่องจากปัญหาการเข้ากันได้กับ PC BUS
นอกจากนี้ PIN ที่เข้ามายังช่วยเพิ่มการอ้างตำแหน่ง DMA และค่าของIRQ SLOT แบบใหม่นี้เรียกว่าเป็น SLOT แบบ 16-BIT ซึ่งต่อมาก็เรียกกันว่าเป็น AT BUS แต่เราจะรู้กันในนาม ISA BUS มากกว่าโดยคำว่า ISA มาจากคำเต็มว่า INDUSTRY STANDARD ARCHITECTUREเราสามารถนำ CARD แบบ 8 BIT มาเสียบลงช่อง 16 BIT ได้ เพราะใช้สถาปัตยกรรมเหมือนๆกัน จะต่างกันก็ตรงที่เพิ่มมา สำหรับ 16 BIT เท่านั้นซึ่งจะใช้ (ในกรณีที่ใช้ CARD 16 BIT) หรือไม่ใช้ (ในกรณีที่ใช้ CARD 8 BIT) ก็ได้ระบบบัส แบบ ISA BUS นี้มีความกว้างของ BUS เป็น 8 MHz และสามารถส่งถ่ายข้อมูลด้วยความเร็วสูงสุดที่ 8 MB ต่อวินาที ในปี 1985 ทาง COMPAG ได้ประกาศเปิดตัว COMPUTER ของตน ในรุ่น 286/12 โดย 12 นั้น หมายถึงความเร็วคือ 12 MHz ซึ่งขณะนั้น IBM มีแค่ 286 ที่ทำงานด้วยความเร็ว
8 MHz ในขณะนั้น ความเร็วจาก 8 MHz ไป 12 MHz นับว่าสูงมากๆเลย เพราะเพิ่มขึ้นมาอีกครั้งหนึ่งเลยที่เดียว (ถ้าเปรียบเทียบกับสมัยนี้ก็เหมือนๆกับจาก
Pentium II 300 ไปเป็น Pentium II 450 นั่นเอง) ซึ่งแน่นอน BUS ของระบบ ก็ต้องทำงานที่ 12 MHz ตามไปด้วย แล้วปัญหาก็เกิดขึ้น ISA BUS นั้นเราทราบแล้วว่ามันทำงานที่ 8 MHz ถ้ามันทำงานที่ 12 MHz จะทำให้เกิดปัญหาที่สำคัญขึ้น เพราะหากว่า CPU ทำงานได้เร็วจริง แต่ไม่สามารถใช้ CPU ได้ ก็แยกการใช้นาฬิกา ของระบบบัสออกจาก CPU ไปเลย โดยที่ CPU อุปกรณ์อื่นๆบน Mainboard จะทำงานที่ความเร็ว 12 MHz แต่ตัวที่ BUS เองจะทำงานคงที่ ที่ 8 MHz เพราะใช้สัญญาณนาฬิกาแยกจากกัน ซึ่งวิธีการนี้ก็เป็นวิธีการแก้ซึ่งก็ใช้กันจวบจนปัจจุบันนี้ แต่ในสมัยนั้น หน่วยความจำหลักหรือ RAM จะอยู่บนExpansion Card ที่อยู่กับ ISA BUS ด้วยเพราะฉะนั้น มันก็เลยทำงานด้วยความเร็วเพียง 8 MHz เท่านั้นและต่อๆมายิ่งมี CPU ขนาด 16 MHzหรือ 24 MHz ในยุคของ 386 ด้วยแล้ว RAM ก็จะทำงานด้วยความเร็วเพียงแค่ 8 MHz เท่านั้น ทาง COMPAQ จึงได้ทำการแก้ไขอีกครั้ง ซึ่งในต้นปี 1987 ทาง COMPAQ ก็ได้วางตลาด COMPAQ Deskpro 386 ที่ความเร็ว 16 MHz โดยคราวนี้ก็แยกสัญญาณนาฬิกาของ RAM ออกไปด้วย ซึ่งก็เป็นต้นแบบที่สำคัญที่ใช้กันต่อมาในปัจจุบันนี้โดยให้ ISA BUS ทำงานที่ความเร็วค่าหนึ่ง RAM อีกค่าหนึ่ง และ CPU อีกค่าหนึ่ง

ทั้ง IBM และ COMPAQ นั้นเป็นคู่แข่งทางการค้ากัน ดังนั้นเรื่องที่จะให้ COMPAQ อยู่เหนือตนเองสำหรับ IBM นั้นเป็นไปไม่ได้ ทาง IBM จึงได้ออกมาตราฐานระบบบัสของตนใหม่ เรียกว่า MICRO CHANNEL  AECHITECTURE หรือ MCA เมื่อระบบบัสได้มีการแข่งขันกันขึ้นแน่นอนระบบที่ถูกนำออกมาเปรียบเทียบ คือ ISAซึ่งก็มีการจับตามองว่าทาง IBM นั้นจะหาทางแก้ไขจุดอ่อนของ ISA BUS ของตนอย่างไร ซึ่งวิศวกรของทาง IBM นั้นมองในแง่มุมที่แตกต่างจากคนอื่นๆเมื่อ INTELได้เปิด CPU ของตนรุ่น 80386 ซึ่งเป็น CPU ขนาด 32 BIT สามารถอ้างตำแหน่งหน่วยความจำได้มากถึง 4 Gigabyte โดยมีความเร็วเริ่มต้นที่ 16 MHz ซึ่ง ISA BUSดูจะไม่เหมาะแล้วกับ CPU ระดับนี้ บรรดาผู้ใช้ PC ต่างก็มองกันว่าทางออกที่ดี คือควรจะมีระบบบัสใหม่ที่สามารถรองรับในจุดนี้ได้ จากการที่วิศวกรของ IBM ถนัดกับManinframe มากกว่าทำให้วิศวกรเหล่านั้นมองว่า PC ก็ควรจะทำงานแบบหลายๆ TASK พร้อมๆกันได้ (MULTIPLE TASK) ประกอบกับ IBM ต้องการที่จะให้ภาพพจน์Mainframe ของตนดูมีประสิทธิภาพสูงกว่า PC จึงไม่ค่อยได้เพิ่มหรือเปลี่ยนแปลงขีดความสามารถให้กับระบบบัสใหม่ให้เด่นกว่าเดิมมากนัก

 

   ISA BUS   เป็นบัสที่สร้างขึ้นจากกลุ่มผู้ขาย 9 บริษัท นำโดยบริษัท COMPAQ สร้างขึ้นเพื่อสู้กับสถาปัตยกรรมไมโครเชลแนลของ IBM    EISA นั้นใช้พื้นฐานหลักมาจาก ISA แต่ได้เพิ่มขีดความสามารถบางอย่างขึ้น ซึ่งบางอย่างก็พัฒนามาจาก MCA ด้วย ซ้ำยังเข้ากันได้กับ ระบบ ISA รุ่นเก่าด้วย และเสียค่าลิขสิทธิ์น้อยกว่าที่จะต้องจ่าย IBM อีกด้วย บัส EISA รันที่ 8 MHz แต่ออกแบบให้กว้างกว่า 32 บิต หมายความว่า แบนด์วิดธ์ ของมันเป็น 33 MHz ต่อวินาที ผ่านบัสภายใต้เงื่อนไขที่ดีที่สุด  บัส EISA มีปัญหาการแอดเดรส และปัญหาหนึ่งที่ทำให้เลิกพัฒนาอุปกรณ์ไมโครแซนเนล คือการคอมแพตทิเบิลย้อนหลัง คือถ้าซื้อคอมพิวเตอร์ใหม่แบบไมโครแซนเนลจาก IBM เราจะต้องซื้อการ์ดอุปกรณ์พ่วงต่อเป็นรุ่น MCA ทั้งหมดซึ่งรวมถึงคอนโทรลเลอร์ของดิสก์ การ์ดแสดงผลโมเด็ม และอื่นๆ ในทางตรงกันข้าม ข้อกำหนดของ EISA จะเรียกใช้คอนเน็คเตอร์ที่ยอมรับการ์ด EISA หรือการ์ด ISA อนุญาตให้มีการเปลี่ยนแปลงอุปกรณ์บางตัว หรือทั้งหมดของเครื่องเก่ามาเครื่องใหม่ได้ สล็อตของ EISA จะทำจากพลาสติกสีน้ำตาล

 

 
   MCABUS
   EISABUS
   LOCAL BUSระบบบัสเหล่านี้แต่เดิมเรียกว่า เป็น PRIVATE BUS เพราะใช้เป็นการส่วนตัวเฉพาะบริษัทเท่านั้น แต่ต่อมาก็เรียกว่าเป็น LOCAL BUS หรือ BUS เฉพาะที่ เพราะใช้สัญญาณนาฬิกาเดียวกับ CPU โดยไม่ต้องพึ่งสัญญาณนาฬิการพิเศษแยกจาก CPU เลย ข้อดีของมันคือ สามารถใช้สัญญาณนาฬิกาเดียวกันกับ CPU
ในขณะนั้นได้ ซึ่งก็มักจะนำไปใช้กับหน่วยความจำหลัก เพื่อเพิ่มประสิทธิภาพโดยรวมของระบบ แต่ก็มีการ์ดแสดงผลอีกชนิดหนึ่งที่ต้องการความไวสูงเช่นDISPLAY CARD ซึ่งหากมีการเข้าถึงและส่งถ่ายข้อมูลระหว่าง CPU กับ DISPLAY CARD ได้เร็วแล้ว ก็จะช่วยลดปัญหาเรื่อง REFRESH RATE ต่ำ เพราะ CPU จะต้องทำ   การประมวลผลและนำมาแสดงผลบนจอภาพ ยิ่งหากว่ามีการใช้ ของจอภาพสูงๆ และเป็น MODE GRAPHICS ด้วยแล้ว CPU ก็ยิ่งต้องการ การส่งถ่ายข้อมูลให้เร็วขึ้น เพื่อภาพที่ได้จะได้ไม่กระตุก และไม่กระพริบ เนื่องจากระบบ LOCAL BUS นั้น จะช่วยในการส่งผ่าน และเข้าถึงข้อมูลได้เร็ว จึงได้มีบางบริษัท นำเอาระบบ LOCAL BUS มาใช้กับ DISPLAY CARD ด้วย ต่อมาได้มีการทำการกำหนดมาตรฐานระบบบัสนี้ขึ้นมา โดยกลุ่มที่ชื่อ VIDEO ELECTRONICSTANDARDS ASSOCIATION หรือ VESA และได้เรียกมาตรฐานนั้นว่า VESA LOCAL BUS หรือเรียกสั้นๆว่า VL BUS ในปี1992 ระบบ VL BUS นั้น สามารถใช้สัญญาณนาฬิกาได้สูงถึง 50 MHz ทั้งยังสนับสนุนเส้นทางข้อมูลทั้ง 32 BIT และ 62 BIT รวมถึงอ้างถึงตำแหน่งหน่วยความจำได้สูงถึง 4 GIGABYTE อีกด้วย แต่อย่างไรก็ตาม        VL BUS ก็ไม่เชิงว่าเป็นสถาปัตยกรรมที่ดีนัก เพราะไม่มีเอกลักษณ์ หรือคุณสมบัติพิเศษนอกเหนือไปจาก ISA มากนัก เพาะมันเหมือนกับเพิ่มขีดความสามารถให้กับ ISA มากกว่าที่จำเป็นพัฒนาความสามารถให้กับ ISA เนื่องจากมันก็ยังคงให้ CPU เป็นตัวควบคุมการทำงานใช้ BUS MASTERING ไม่ได้ และยังไม่สามารถปรับแต่งค่าต่างๆ ผ่านทาง SOFTWARE ได้

 

  

 VL BUSโลคอลบัสแบบ VESA ออกแบบโดยกลุ่มที่ชื่อ VIDEO ELECTRONIC STANDARDS ASSOCIATION หรือ VESA เป็นการร่วมมือของผู้ขายผลิตภัณฑ์ การแสดงผลและบริษัทที่เกี่ยวกับด้านกราฟประมาณ 120 แห่ง ลักษณะคอนเน็ตเตอร์เสียบของการ์ดอุปกรณ์พ่วงต่อแบบวีแอลบัส ควรจำไว้ว่า คอนเน็ตเตอร์เสียบแบบมาตรฐาน ISA 16 บิต อยู่ด้านขวาและมีคอนเน็ตเตอร์เสียบเพิ่มแบบ โลคอลบัสด้านซ้าย ข้อสำคัญที่ต้องจำไว้ว่าการเพิ่มสล็อต โลคอลบัส เพียง 1หรือ 2 สล็อตให้กับระบบไม่จำเป็นว่าจะสามารถปรับปรุงการทำงานของระบบได้จนไม่น่าเชื่อ มันจะปรับปรุงการทำงานแต่กับเพียงส่วนประกอบที่ออกมาโดยเฉพาะเท่านั้น เช่น เสียบการ์ดแสดงผลที่ไม่ใช่การ์ดเร่งความเร็วในสล็อต โลคอลบัส อาจมีผลทำให้การทำงานช้าลงมากกว่าเสียบการ์ดเร่งความเร็ววิโตรส์ลงในบัส ISA การออกแบบ VL BUS จะเรียกใช้คอนเน็ตเตอร์ที่เพิ่มจากคอนเน็ตเตอร์ของEISA หรือ ISA ความจริงผู้ขายส่วนใหญ่ที่ใส่สล็อต VL BUS ในเครื่องพีซีจะวางอยู่ข้างๆ สล็อต ISA หรือ EISA บนบอร์ดแม่ ลองให้รันที่ความเร็วซีพียู และลองรับข้อมูลแบบ 32บิต ได้ VL BUS มีแบนด์วิดธ์สูงสูด 133 เมกะไบต์ต่อวินาทีลักษณะของ VL BUS ไม่ใช่บัสที่ออกแบบมาทดแทน ISA เหมือนกับที่ EISA และ MCA ได้พยายามมาก่อนและประสบความล้มเหลว หากแต่เป็นบัสส่วนขยายที่ผู้ผลิตเพิ่มเข้าไปบนแผงวงจรหลักของรุ่นใหม่ๆจะมีสล็อตของ VL BUSที่ต่อยื่นออกมาจากสล็อตเดิมของ ISA ซึ่งอาจมีตั้งแต่ 1-3 สล็อต ตามแต่ละบริษัทจะเป็นผู้ผลิต ความเร็วในการถ่ายโอนข้อมูลใน VL BUS ไม่ได้กำหนดให้มีค่าตายตัวเหมือนกับบัสแบบ ISA หรือ EISA หากแต่มีความเร็วตามความเร็วของซีพียูโดยตรง
   ข้อจำกัดของ VL BUS   วีแอลบัสมีข้อจำกัดสำคัญประการหนึ่งคือ จำนวนการ์ดแอลบัส ที่จะเสียบใช้งานได้จะขึ้นอยู่กับความเร็วของซีพียูที่กำหนดของ VESA แล้วผู้ใช้สามารถเสียบการ์ดเมื่อใช้ซีพียู 486 ที่ความเร็ว 33MHz และต้องลดกำหนดการ์ดลงไป เมื่อใช้ซีพียูที่มีความเร็วสูงขึ้นทั้งนี้เพื่อความเพี้ยนของสัญญาณที่อาจเกิดขึ้นจนเกิดค่าที่ ยอมรับได้ และจะส่งผลให้ไม่สามารถใช้งานระบบ ยกเว้นในกรณีที่แผงวงจรหลักได้รับการออกแบบให้มีบัฟเฟอร์สำหรับเก็บพักข้อมูลอยู่ก็อาจเพิ่มการ์ดได้มากขึ้นใช้กับซีพียูที่มีความเร็วสูงๆ แต่ทว่าการใช้กับบัฟเฟอร์ก็อาจมีข้อเสียเนื่องจากจะเป็นตัวถ่วงความเร็วของซีพียูจากการที่ต้องเพิ่มสถานะการรอคอย ซึ่งย่อมส่งผลให้สมรรถนะการทำงานลดลง ข้อจำกัดของวีแอลบัส แนะนำว่าไม่ควรติดตั้งการ์ดเกินกว่า 1 การ์ด เมื่อใช้ซีพียูที่มีความเร็ว 40 MHz และไม่ควรใช้การ์ดวีแอลบัส      กับซีพียูที่มีความเร็ว 50 MHz เพราะการออกแบบ วิแอลบัสไม่สามารถรับอุปกรณ์ที่พ่วงต่อให้เท่ากับความเร็วของซีพียูที่เกินกว่า 40 MHz ได้ แผงวงจรหลักที่จำหน่ายใน เมืองไทย โดยส่วนใหญ่จะมีสล็อตสำหรับ วีแอลบัสเพียง 2 สล็อต ซึ่งมักจะไม่เป็นปัญหาสำหรับการใช้งาน และ โดยเฉพาะอย่างยิ่ง การ์ดแบบวีแอลบัสที่มีจำหน่ายโดยทั่วไปค่อนข้างจำกัดอยู่เพียงการ์ดจอภาพและการ์ดควบคุมดิสก์เท่านั้น   PCI BUSระบบ PCI หรือ PERIPHERAL COMPONENT INTERCONNECT ก็เป็น LOCAL BUS อีกแบบหนึ่งที่พัฒนาขึ้นโดย INTEL โดยที่แยกการควบคุมของระบบบัส กับ CPU ออกจากัน และส่งข้อมูลผ่านกันทางวงจรเชื่อมซึ่งจะมี CHIPSET ที่คอยควบคุมการทำงานของระบบบัสต่างหาก โดยที่ CHIPSET ที่ควบคุมนี้จะเป็นลักษณะ PROCESSOR INDEPENDENT คือไม่ขึ้นกับตัว PROCESSOR ต่อมาเมื่อ INTEL เปิดตัว CPU ใน GENERATION ที่ 5 ของตน INTEL PENTIUM ซึ่งเป็น CPUขนาด 64 BIT ทาง INTEL ได้ทำการกำหนด มาตรฐาน ของ PCU เสียใหม่เป็น PCI 2.0 ซึ่ง PCI 2.0 นี้ก็จะมีความกว้างของเส้นทางข้อมูลถึง 64 BIT ซึ่งหากใช้กับ CARD 64 BIT แล้วก็จะสามารถให้อัตราเร็วในการส่งผ่านที่สูงสุดถึง 266 M/s จุดเด่นของ PCI ที่เห็นได้ชัดนอกเหนือไปจากที่กล่าวข้างต้นก็ยังมีเรื่องของ BUS MASTERING ซึ่ง CPI นั้นก็สามารถทำได้เช่นกันกับ EISA และ MCA แล้ว CHIPSET ที่ใช้เป็นตัวควบคุมการทำงาน ก็ยังสนับสนุนระบบ ISA และ EISA อีกด้วย
ซึ่งก็ทำให้สามารถผลิต MAINBOARD ที่มีทั้ง SLOT ISA, EISA และ PCI รวมกันได้ นอกจากนั้นยังสนับสนุนระบบ PLUG-ABD-PLAY อีกด้วย

 

 

 AGP

 ในกลางปี 1996 เมื่อ INTEL ได้ทำการเปิดตัว INTEL PENTIUN II ซึ่งพร้อมกันนั้นก็ได้ทำการเปิดตัวสถาปัตยกรรมที่ช่วยเพิ่มประสิทธิภาพของหน่วยแสดงผลด้วยนั่นก็คือ ACCELERATED GRAPHICS PORT หรือ AGP ซึ่งก็ได้เปิดตัว CHIPSET ที่สนับสนุนการทำงานนี้ด้วย คือ 440LX AGP นั้นจะมีการเชื่อมต่อกับ CHIPSETของระบบแบบ POINT-TO-POINT ซึ่งจะช่วยให้การส่งผ่านข้อมูลระหว่าง CARD AGP กับ CHIPSET ของระบบได้เร็วขึ้น และยังมีเส้นทางเฉพาะสำหรับติดต่อกับหน่วยความจำหลักของระบบ เพื่อใช้ทำการ RENDER ภาพแบบ 3D ได้อย่างรวดเร็วอีกด้วยจากเดิม CARD แสดงผลแบบ PCI นั้นจะมีปัญหาเรื่องของหน่วยความจำเป็น CARD เพราะเมื่อต้องการใช้งานด้านการ RENDER ภาพ 3 มิติ ที่มีขนาดใหญ่มากๆ ก็จำเป็นต้องมีการใช้หน่วยความจำบน CARD นั้นมากๆ เพื่อรองรับขนาดของพื้นผิว ที่เป็นองค์ประกอบสำคัญของงาน RENDER แน่นอนเมื่อหน่วยความจำมากๆ ราคาก็ยิ่งแพง ดังนั้นทาง INTEL จึงได้ทำการคิดค้นสถาปัตยกรรมใหม่เพื่องานด้าน GRAPHICS นี้โดยเฉพาะ AGP จึงได้ถือกำเนิดขึ้นมา AGP นั้นจะมี MODE ในการ RENDER อยู่ 2 แบบ คือ LOCAL TEXTURING และ AGP TEXTURING โดยใช้ LOCAL TECTURING นั้นจะทำการ COPY หน่วยความจำของระบบไปเก็บไว้ที่เฟรมบัฟเฟอร์ของ CARD จากนั้นจะทำการประมวลผลโดยดึงข้อมูลจากเฟรมบัฟเฟอร์บน PCI ด้วย วิธีการนี้จะเพิ่มขนาดของหน่วยความจำเป็น CARD มาก AGP TEXTURING นั้นเป็นเทคนิคใหม่ที่ช่วยลดขนาดของหน่วยความจำ หรือเฟรมบัฟเฟอร์บน DISPLAY CARD ลงได้มาก เพราะสามารถใช้งานหน่วยความจำของระบบให้เป็นเฟรมบัฟเฟอร์ได้เลย โดยไม่ต้องดึงข้อมูลมาพักไว้ที่เฟรมบัฟเฟอร์ของ CARD ก่อนโดยปกติแล้ว AGP จะทำงานที่ความเร็ว 66 MHz ซึ่งแม้ว่าระบบจะใช้ FSB เป็น 100 MHz แต่มันก็ยังคงทำงานที่ความเร็ว 66 MHz ซึ่งใน MODE ปกติของมันก็จะมีความสามารถแทบจะเหมือนกับ PCI แบบ 66 MHz เลยโดยจะมีอัตราการส่งข้อมูลที่สูงถึง 266 M/s และนอกจากนี้ยังสามารถทำงานได้ทั้งขอบขาขึ้นและขอบขาลงของ 66MHz จึงเท่ากับว่ามันทำงานที่ 133 MHz ซึ่งจะช่วยเพิ่มอัตราการส่งถ่ายข้อมูลขึ้นได้สูงถึง 523 M/s ซึ่งเรียก MODE นี้ว่า MODE 2X และ MODE ปกติว่าMODE 1X สำหรับความเร็วในการส่งถ่ายข้อมูลนั้น ก็ขึ้นกับชนิดของหน่วยความจำหลักด้วย ถ้าหน่วยความจำหลักเป็นชนิดที่เร็วก็จะยิ่งช่วยเพิ่มอัตราเร็วในการส่งถ่ายมากขึ้น ดังนี้
               – EDO RAM หรือ SD RAM PC 66 ได้ 528 M/s
               – SD RAM PC 100 ได้ 800 M/s
               – DR RAM ได้ 1.4 G/s
     อีกสาเหตุหนึ่งที่ทำให้ระบบบัสแบบ AGP ทำได้ดีกว่า PCI ก็เพราะเป็น SLOT แบบเอกเทศไม่ต้องไปใช้ BANDWIDTH ร่วมกับใคร

 

ให้ความเห็น »

ใส่ความเห็น

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / เปลี่ยนแปลง )

Twitter picture

You are commenting using your Twitter account. Log Out / เปลี่ยนแปลง )

Facebook photo

You are commenting using your Facebook account. Log Out / เปลี่ยนแปลง )

Google+ photo

You are commenting using your Google+ account. Log Out / เปลี่ยนแปลง )

Connecting to %s

%d bloggers like this: